Falcon Pack

Bill Bloebaum, Albert Lee, Alex Rosner

Problem Description

Communication between mass numbers of military drones is difficult to coordinate.

Mexican free-tailed bats serve as an ideal model to study:

Emerge from caves in dense stream at ~25 mph.

Demonstrate ideal swarming behavior avoiding collisions with obstacles and each other.

Emit short, high frequency pulses that sweep across frequencies to communicate.

Proposed Solution

Attach electronic rig to falcon, and train it to fly around bat swarms.

Yes, we bought a falcon.

Basic Goal: PIC32 microcontroller connected to high-frequency microphone.

Record communication between bats to aid in research.

Adjustable gain

Analog to digital conversion

Stretch Goal: Two microphones for stereo-sound, and video recording with a camera.

Demonstrated Features

High-quality data vs. measured video and audio - Signal-to-Noise Ratio

Response to low-volume and frequencies inside/outside range

Synchronization compared to iPhone video

Length of audio/video clips that can be saved to memory

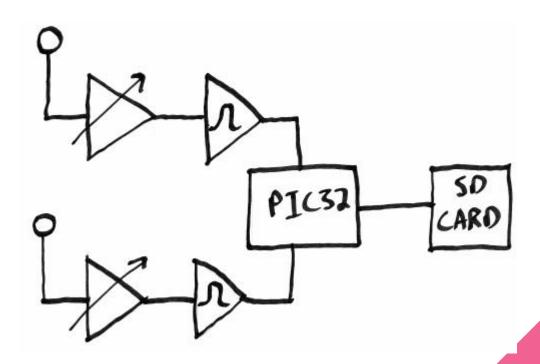
Less than 25 g

Available Technologies

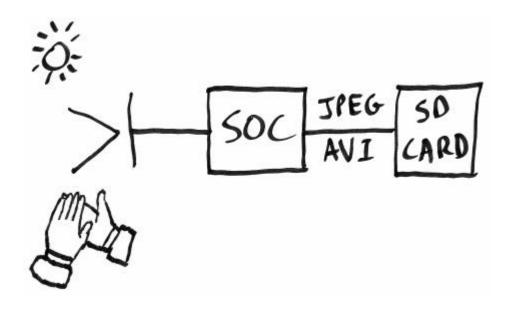
Knowles Mini Sonic Ultrasonic Acoustic Sensor

PIC32MX series

SOC (undecided)


SanDisk microSD

CMOS image sensor


Op-Amp and lumped components

Falcon hood

Block Diagrams

Block Diagrams

Engineering Content

Make data blocks

Analog front end

Amp, anti-aliasing, band pass filtering

Microphone/microSD interface

Process data blocks

A/D conversion

Write to microSD

Stereo audio processing